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A Cartesian adaptive level set method
for two-phase flows

By F. Ham AND Y.-N. Young

1. Motivation and objectives

Simulations of flows involving free surfaces have become ubiquitous in the literature.
The evolution of both simulation methods and computer speed have allowed the inves-
tigation of many problems of increasing complexity and engineering relevance. For 2D
simulations, it is reasonably common to use grid resolutions of 512 × 512 or larger. See
for example the 2D planar breaking wave simulations of Chen et al. (1999), or the ax-
isymmetric drop breakup simulations of Han and Tryggvason (1999a, 1999b). Many such
free surface problems are fundamentally three dimensional and the absence of three-
dimensional effects such as the pinch-off of stretched filaments by surface tension makes
it difficult to make valid physical conclusions or use 2D results to develop models. Achiev-
ing similar grid resolution in 3D, however, is outside the computational reach of most
research centers.
For many problems of interest, a fine grid is required in only a relatively small portion

of the domain (e.g. around regions of high surface curvature) and much coarser grids are
sufficient to capture the smoothly evolving velocity fields far from the surface. It is this
type of problem that motivates the present Cartesian adaptive method, where the finest
resolution in the neighbourhood of the free surface may be of order 5123 (sometimes
called the effective resolution), but the coarsening away from the free surface yields an
actual number of control volumes that is less than using the fine grid everywhere by at
least an order of magnitude.
A number of adaptive Cartesian methods for freesurface calculations have been pro-

posed in the literature. For example, Haj-Hariri et al. (1997) used Cartesian local grid
refinement to investigate thermocapillary motion of 3D drops. Their method used an
octree-based structure to store the grid heirarchy. More recently Sussman et al. (1999)
proposed an adaptive levelset method based on the embedded grid approach, where the
global computational domain is divided into uniformly refined rectangular patches. This
approach has the advantage of allowing a traditional staggered or semi-staggered struc-
tured discretization throughout most of the domain, with special interpolations required
only at the interface between grid levels. The embedded grid approach may not, however,
lead to the smallest Cartesian grids possible because of the restriction that refined regions
be rectangular and isotropic. Additionally, embedded grid approaches can be difficult to
parallelize and load balance.
In the present contribution we develop a level set method based on local anisotropic

Cartesian adaptation as described in Ham et al. (2002). Such an approach should allow
for the smallest possible Cartesian grid capable of resolving a given flow. The remainder
of the paper is organized as follows. In section 2 the level set formulation for free surface
calculations is presented and its strengths and weaknesses relative to the other free surface
methods reviewed. In section 3 the collocated numerical method is described. In section
4 the method is validated by solving the 2D and 3D drop oscilation problem. In section
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5 we present some results from more complex cases including the 3D drop breakup in an
impulsively accelerated free stream, and the 3D immiscible Rayleigh-Taylor instability.
Conclusions are given in section 6.

2. Mathematical Formulation

For recent reviews of the level set method and its many applications, the interested
reader is referred to Osher and Fedkiw (2001) or Sethian (2001). Here we briefly present
its formulation for incompressible 2-fluid problems.
The incompressible, immiscible, two-fluid system is treated as a single fluid with strong

variations in density and viscosity in the neighborhood of the interface. The continuity
and momentum equations for such a flow can be written in conservative form as:

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.1)

∂ρui
∂t

+
∂ρujui
∂xj

= −
∂p

∂xi
+
∂τij
∂xj

+ ρgi + σκδ(d)ni, (2.2)

where ui is the fluid velocity, ρ the fluid density, p the pressure, τij the viscous stress
tensor, gi the acceleration due to gravity, σ the surface tension coefficient, κ the local free
surface curvature, δ the Dirac delta function evaluated based on d the normal distance
to the surface, and ni the unit normal at the free surface.
It is well known that solving equations 2.1 and 2.2 directly in the presence of the

discontinuities at the interface will lead to the excessive smearing of the interface over
long time integration, and/or numerical “ringing” in the region of the discontinuities due
to dispersive errors in the numerical discretization. In the present work, we capture the
interface as the zero-level isosurface of a higher-order function φ, the level set function
(effectively an additional transported scalar). On either side of the interface, the sign of
the level set function can be used to determine which fluid is present. This allows the
fluid properties to be written as a function of the level set only, specifically ρ = ρ(φ).
This allows the continuity equation to be written:

dρ

dφ

(
∂φ

∂t
+ uj

∂φ

∂xj

)
+ ρ

∂uj
∂xj

= 0 (2.3)

For the case of constant density except in the neighborhood of the zero level set,
which represents the fluid interface, the solution of the continuity equation can thus be
decomposed into the solution of the following:

∂φ

∂t
+ uj

∂φ

∂xj
= 0

∣∣∣∣
φ=0

(2.4)

∂uj
∂xj

= 0 (2.5)

Eq. 2.4 is the standard evolution equation for the level set function, and eq. 2.5 is the
incompressible continuity equation. Note that the level set equation need only be solved
near the interface, which we have defined as the zero level set. Away from the interface,
it is common to make φ equal to a signed distance function.
In a similar way, the application of chain rule to the momentum equation allows the
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Figure 1. Spatial location of variables for collocated discretization.

decomposition of the momentum equation into the solution of the level set equation, eq.
2.4, and the solution of the following momentum equation:

ρ
∂ui
∂t
+ ρ

∂ujui
∂xj

= −
∂p

∂xi
+
∂τij
∂xj

+ ρgi + σκδ(|φ|)ni (2.6)

Equations 2.4 – 2.6 comprise our governing system for the present work. Note that
the level set formulation results in a system of governing equations that can no longer
be written in conservative form. Thus, when the finite volume method is applied to this
system, we cannot expect to achieve discrete conservation of mass and momentum (in
the region of the interface). It is the hope of the level set formulation that these errors
in conservation are mitigated by the more accurate capturing of the interface that is
possible with the smoothly-varying level set function.

3. Numerical Method

The governing equations are solved on a Cartesian adaptive grid. The grid arrangement
and adaptation are described more completely in Ham et al. (2002), and here we only
discuss details specific to the simulation of multiphase flows using level set methods on
such a grid.
Figure 1 shows the spatial arrangement of variables on the Cartesian adaptive grid.

All variables are stored at the control volume (CV) centers with the exception of a
face-normal velocity, located at the face centers, and used to enforce the divergence-
free constraint in each time step. The variables are staggered in time so that they are
located most conveniently for the time advancement scheme. Denoting the time level by
a superscript index, the velocities are located at time level tn and tn+1, and pressure,
density, viscosity, and the level set at time levels tn−

1
2 and tn+ 1

2 . The semi-descretization
of the governing equations in each time step is then as follows.

Step 1. Advance the level set:

φn+ 1
2 − φn−

1
2

∆t
+ unj

1

2

∂

∂xj

(
φn−

1
2 + φn+ 1

2

)
= 0 (3.1)
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Here the advantage of time-staggering is evident – i.e. we know the velocity uni from
the previous time step, so this equation is decoupled from the other equations, and can
be advanced on its own to get the level set value at the mid-point of the new time level,
φn+ 1

2 . Here we have used an implicit Crank-Nicholson time advancement scheme, which
requires an iterative solution method. In practice the hyperbolic system is not stiff, and
can be quickly converged by a simple iterative scheme such as Gauss-Seidel. The spatial
derivatives required in eq. 3.1 are approximated by a 5th-order WENO scheme (Jiang &
Peng 2000). While effective at recovering the viscosity solution to the level set equation,
the WENO discretization requires that the grid be locally refined in a uniform way in a
band about the zero level set, and thus does not take full advantage of the flexibility in
the adaptive grid.

Step 2. Reinitialize the level set by solving to steady state:

∂φ

∂τ
= sgn (φ) (1− |∇φ|) . (3.2)

The reinitialization step is performed every time step, and ensures that the level set is a
signed distance function away from φ = 0, without (theoretically) changing the location of
the zero-level set. Spatial derivatives required in eq. 3.2 are once again approximated using
a 5th-order WENO scheme (Jiang & Peng 2000). For this equation we use explicit third
order TVD Runge-Kutta method for time integration. In practice, it is not neccessary
to solve to steady state, and we have found that 5 iterations with a pseudo-time step of
∆τ = ∆x/4 is sufficient when performed every computational time step.

Step 3. Calculate the new density and viscosity at the midpoint of the time step:

ρn+ 1
2 = ρ1H

(
φn+ 1

2

)
+ ρ2

(
1−H

(
φn+ 1

2

))
(3.3)

µn+ 1
2 = µ1H

(
φn+ 1

2

)
+ µ2

(
1−H

(
φn+ 1

2

))
(3.4)

where ρ1, µ1 are the constant properties of the fluid occupying the region φ > 0, and
ρ2, µ2 are the constant properties of the fluid occupying the region φ ≤ 0, and H is a
smoothed Heaviside step function (Sussman et al. 1994).

Step 4. Project the momentum equations:

The remaining steps are a variant of the collocated fractional step method described,
for example, by Kim and Choi (2000). First, calculate a projected velocity field ûi using
the momentum equations:

ûi − uni
∆t

= −
1

ρn+ 1
2

(
∂p

∂xi

n− 1
2

+R
n+ 1

2

i

)
(3.5)

where Ri contains all other terms in the momentum equation, eq 2.6. We discretize both
the convective and viscous terms implicitly using second-order symmetric discretizations,
and the surface tension explicitly based on the known level set at the midpoint of the
current time step, φn+ 1

2 . Some care must be taken in the discretization of the surface
tension terms when treated as source terms in the momentum equations of a collocated
scheme, as described below.
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Step 5. Subtract the old pressure gradient:

u∗i
n+1 = ûi

n+1 +∆t
1

ρn+ 1
2

δp

δxi

n− 1
2

(3.6)

Step 6. Interpolate the starred velocity field to the faces:

U∗
f
n+1 = u∗i

n+1
f
−∆t


Ri

n+ 1
2

ρn+ 1
2

f

−
R
n+ 1

2

f

ρ
n+ 1

2

f


 , (3.7)

where ()
f
is a second-order interpolation operator that yields a face-normal component

from two CV-centered vectors.

Step 7. Solve the variable coefficient Poisson equation for the new pressure:

1

∆t

∑

f

U∗
f
n+1Af =

∑

f

1

ρ
n+ 1

2

f

δp

δn

n+ 1
2

Af . (3.8)

Step 8. Update the face velocities to the new divergence-free field:

Un+1
f − U∗

f

∆t
= −

1

ρ
n+ 1

2

f

∂p

∂n

n+ 1
2

(3.9)

Step 9. Reconstruct the pressure gradient at the CV centers:

1

ρn+ 1
2

∂p

∂xi

n+ 1
2

=
1

ρ
n+ 1

2

f

∂p

∂n

n+ 1
2

xi

(3.10)

where ()
xi

represents a reconstruction operator. In this case we use a face-area weighted
least squares reconstruction.

Step 10. Update the CV velocities:

un+1
i − u∗i
∆t

= −
1

ρn+ 1
2

∂p

∂xi

n+ 1
2

(3.11)

By adding eqs. 3.5, 3.6, and 3.11, it is clear that a second-order time advancement of
the momentum equation is recovered.
A critical difference between the present formulation and the formulation of Kim and

Choi is in the calculation of the starred face-normal velocities (eq. 3.7). Kim and Choi
assume that:

Ri
n+1/2

ρn+1/2

f

≈
R
n+1/2
f

ρ
n+1/2
f

. (3.12)
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This is an O(∆x2) approximation, seemingly consistent with the overall accuracy of the
method, and significantly simplifies the calculation of the Poisson equation source term.
In the present investigation, however, it was found that when surface tension forces were
introduced in the region of the zero level set, this approximation could lead to large non-
physical oscillations in the CV-centered velocity field. To solve this problem, the surface
tension forces must be calculated at the faces, and then averaged to the CV centers, i.e.:

Rσ
i

ρ
≡
Rσ
f

ρf

xi

(3.13)

With this calculation of the surface tension forces, we can no longer make the assump-
tion of eq. 3.12, and the additional terms must be included in the calculation of U ∗

f and
thus in the Poisson equation source term.

4. Validation

As validation cases for the method, we solve the 2D column and 3D drop oscillation
problems.

4.1. 2D column oscillation

From Lamb (1932), for a 2D column of liquid in the limit of zero viscosity perturbed
according to:

r = a (1 + εcos (nθ)) (4.1)

where a is the mean radius, ε a small perturbation, and n the mode, the oscillation
frequency will be:

ω2 = n
(
n2 − 1

) σ

ρa3
. (4.2)

Figure 2(a) shows the initial condition for a drop oscillation calculation for mode
n = 5. Here we have exaggerated the perturbation amplitude to ε = 0.15 for illustrative
purposes. In the actual computations, ε = 0.02 was used for the initial condition. Figure
2(b) compares the calculated results to the theory (period T = 2π/ω), with generally
good agreement. For these calculations, we used periodic boundary conditions in a square
domain of size L = 4a, and set the density of the surrounding fluid to ρ2 = 0.001ρ to
minimize its effect on the oscillations. The fluid viscosity was adjusted to keep the decay
in amplitude of the oscillations to less that 5% per cycle.

4.2. 3D drop oscillation

For a 3D drop perturbed according to

r = a (1 + εSn) (4.3)

where the surface harmonics of order n, Sn, are defined:

S1 =
1

2

√
3

π
cosθ (4.4)
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Figure 2. a) Sample grid and initial zero-level set for 2D drop oscillation problem with n = 5.
b) Comparison of computed and theoretical 2D drop oscillation periods for modes n = 2 through
5.

S2 =
1

4

√
5

π

(
3cos2θ − 1

)
(4.5)

S3 =
1

4

√
7

π

(
5cos3θ − 3cosθ

)
(4.6)

S4 =
3

16

√
1

π

(
35cos4θ − 30cosθ + 3

)
(4.7)

S5 =
1

16

√
11

π

(
63cos4θ − 70cos2θ + 15

)
(4.8)

the oscillation frequency is given by:

ω2 = n (n− 1) (n+ 2)
σ

ρa3
. (4.9)

Figure 3 (a) shows the drop surface for the mode n = 5. Figure 3 (b) compares the
calculated results to the theory, also with good agreement.

5. Results

In the following subsections we present some results from simulations of more com-
plex flows. For the purposes of this paper describing the numerical method, these cases
are meant to simply illustrate the potential of the method. Consequently we do not
present any analysis of the associated flow physics, which will be the subject of future
investigations.
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Figure 3. a) Initial zero-level set for 3D drop oscillation problem with n = 5. b) Comparison
of computed and theoretical 3D drop oscillation periods for modes n = 2 through 5.

5.1. Secondary breakup of spherical drops

The secondary breakup of drops is an important problem in spray atomization, and the
subject of the 2D axisymmetric numerical investigation of Han and Tryggvason (1999a,
1999b). We used the present Cartesian adaptive method to calculate 3D drop breakup in
an impulsively accelerated free stream. Figure 4 shows the calculated free surface for a
case run with equivalent resolution of 128×128×128 with a domain size of 5D×5D×5D.

5.2. Rayleigh-Taylor Problem

The Rayleigh-Taylor instability refers to the instability of the plane interface between
two fluids of different density superimposed one over the other and subject to gravity.
When the upper fluid has a density greater than the lower fluid, the interface can be
unstable to small perturbations whose amplification is well described by linear theory
with dependence on the density ratio, gravity, surface tension coefficient, and viscos-
ity (Chandrasekhar 1961). As the amplification continues and the problem enters the
nonlinear regime, the fluid mixing can become chaotic, characterized by bubbles of lighter
fluid rising into the heavier fluid, and spikes of heavier fluid falling into the lighter fluid,
with regions of high vorticity near the spike/bubble interface. The resulting mixing zone
is known experimentally (Schneider et al. 1998) to broaden in a way that depends lin-
early on the gravitational acceleration g and the Atwood number A = (ρ1−ρ2)/(ρ1+ρ2),
and quadratically on the time, i.e.

hb,s = αb,sAgt
2, (5.1)

where hb or hs represents the penetration length for bubbles or spikes respectively, and
α has been introduced as a constant of proportionality, sometimes called the acceleration
constant.
Recently, the miscible Rayleigh-Taylor problem has been investigated numerically by



Cartesian adaptive level set method 235

(a) 0.5 (b) 1.5 (c) 2.5 (d) 3.5 (e) 4.5
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Figure 4. Breakup of an initially spherical drop in an impulsively accelerated field. The
number below each figure indicates the non-dimensional time tU/D. Free stream veloc-
ity is from top-left-back to lower-right-front. Properties for this simulation are as follows:
Re = ρgDU/µg = 1000, We = ρgU

2D/σ = 20, Oh = µl/
√

ρlσD = 0.007.

Young et al. (2001), who calculate αb ≈ 0.03. Experimental results for immiscible fluids
yield higher values of αb ≈ 0.05 − 0.07. A recent review of experimental and simulation
results for the immiscible case is given by Glimm et al. (2001).
Figure 5 presents some results from the application of the present Cartesian adaptive

method to this problem. These computations were performed in a 2 × 2 × 2 box with
the interface perturbed randomly with a maximum amplitude of 0.01. Properties of the
simulation were selected to give a wavelength of maximum instability of λ∗ = 0.35. These
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Figure 5. Evolution of the interface for the 3D Rayleigh-Taylor problem with multi-mode
perturbation: top panels – plan view looking down on interface; bottom panels – elevation view
from side.

preliminary simulations were made with the relatively coarse equivalent resolution in the
region of the zero-level set of 64× 64× 64, or about 10 CVs per wavelength for the most
unstable mode. Figure 5 illustrates the evolution of the interface at 3 different times for
the Atwood number A = 0.98.

6. Conclusions

A simulation tool that integrates Cartesian adaptive grids with the level set method
has been developed. The method as described is particularly suited to problems where
the smallest scales are associated with the free surface motions, and significant savings
can thus be realized by coarsening the grid away from the surface. The method has been
validated and its potential demonstrated by solving several test problems, including 2D
and 3D drop oscillations, drop breakup in an impulsively accelerated free stream, and
the immiscible 3D Rayleigh-Taylor problem.
Our ongoing work is focused on changing the level set solver to the particle level set

method of Enright et al. (2002). The improved conservation properties of this method
may allow us to move away from the higher-order WENO discretizations presently used
in the level set advancement and reinitialization equations. With lower-order methods,
adaptation can be added in the region of the zero-level set, resulting in a further signifi-
cant reduction in computational cost.
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